
Influences of developers’ perspectives on their engagement with
security in code

Irum Rauf, Tamara Lopez,
Helen Sharp, Marian Petre,

Thein Tun
The Open University, UK

�rstname.lastname@open.ac.uk

Mark Levine
John Towse

University of Lancaster
University of Lancaster, UK

Dirk van der Linden
Department of Computer and

Information Sciences, Northumbria
University, UK

Awais Rashid
Bristol Security Group,
University of Bristol, UK

Bashar Nuseibeh
The Open University, UK
Lero, Republic of Ireland

Abstract
Background: Recent studies show that secure coding is about

not only technical requirements but also developers’ behaviour.
Objective: To understand the in�uence of socio-technical con-

texts on how developers attend to and engage with security in
code, software engineering researchers collaborated with social
psychologists on a psychologically-informed study.

Method: In a preregistered, between-group, controlled experi-
ment, 124 developers from multiple freelance communities, were
primed toward one of three identities, following which they com-
pleted code review tasks with open-ended responses. Qualitative
analysis of the rich data focused on the attitudes and reasoning that
shaped their identi�cation of security issues within code.

Results: Overall, attention to code security was intermittent and
heterogeneous in focus. Although social identity priming did not
signi�cantly change the code review, qualitative analysis revealed
that developers varied in how they noticed issues in code, how they
addressed them, and how they justi�ed their choices.

Conclusion: We found that many developers do think about se-
curity – but di�erently from one another. Hence, e�ective interven-
tions to promote secure codingmust be appropriate to the individual
development context. Data is uploaded at: https://osf.io/3jvrk/�les/

CCS Concepts
• Security and privacy! Social aspects of security and pri-
vacy.

ACM Reference Format:
Irum Rauf, Tamara Lopez, Helen Sharp, Marian Petre, Thein Tun, Mark
Levine, John Towse, Dirk van der Linden, Awais Rashid, and Bashar Nu-
seibeh. . In�uences of developers’ perspectives on their engagement with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CHASE 2022, May 21–22, 2022, Pittsburgh, PA, USA
© Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

security in code. In Proceedings of CHASE ’22: Proceedings of the 15th Interna-
tional Conference on Cooperative and Human Aspects of Software Engineering
(CHASE) (CHASE 2022). ACM, New York, NY, USA, 10 pages.

1 Introduction
The security of software is often considered a technical feat

that developers need to accomplish by writing secure code. Recent
studies show that writing secure code – that is, following coding
practices that ensure that the software does not contain known
vulnerabilities – is not only about the technical requirements of
secure coding but also concerns developers’ psychological barriers
[28]. Thus, the development of secure code is not only about the
quality of code per se, but also about the frame of reference adopted
by those who are responsible for its implementation.

Additionally, developers are increasingly escaping organizational
boundaries and working under their own priorities and constraints,
with varying skills and experiences [8]. This diversity of developers
is at the heart of a range of innovations in the digital economy. The
software these developers produce can be, and is, deployed across
systems pervasive in many aspects of human activity and is used by
a global user base. Little is known about the security implications
of freelance developers’ software and security perspectives.

As part of an ongoing research collaboration between software
engineering researchers and behavioral scientists, we are investi-
gating what might in�uence developers’ secure coding practices.
Recognising the value and importance of more transparent open
scholarship for software engineering [21], we developed and pre-
registered 1 a psychological experiment in which we manipulated
the social identity focus of 124 developers.

The study was structured as a between-group controlled experi-
ment and included rich data collection to support analysis of the
attitudes and reasoning that shaped the observed behavior. The
design of the study was motivated by the Social Identity (SI) theory
[15], the product of four decades of work in social psychology on
the �uidity and complexity of group identity and its impact on
real-world behaviours. The study aimed to assess the behaviour
of the participants under conditions that prime them to think of
themselves as individuals, or as part of the community mediated
by the feelings of social concerns and responsibilities. The study
1The �nal design of the study was pre-registered at the OSF (Open Science Frame-
work) https://osf.io/3jvrk/ to avoid any biases of researchers during the study and to
strengthen the hypothesis-testing.

CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA I. Rauf , et al.

includes code-review tasks with open-ended responses to assess
participants’ engagement with code, and responses to psychological
Likert-scale questions to assess developers’ attitudes.

The study investigated two key research questions:
RQ 1: Does the social priming of the participants, i.e., cueing them

to think of themselves as part of the developer community, in�uence
their security engagement with code? This question was planned
in the pre-registration of the study. To answer this question, we
collected evidence of developers’ security engagement from their
open-ended responses for their code review tasks. We scored the
evidence and conducted a quantitative evaluation of the control
and primed groups – discussed in Section 3.2.

RQ2:How do developers attend to security in code? The qualitative
analysis of participants’ responses was also part of pre-registration.
To address RQ2, we conducted an inductive analysis [32] of partici-
pants’ responses that o�ered evidence of engagement with security
during code review. We investigated how participants identi�ed
security issues in code, how participants mitigated secure solutions
in code, and why developers made decisions that involved security
when they engaged with code – discussed in Section 4.

Our �ndings suggest that developers often think about security,
but di�er from each other in how they perceive security and ad-
dress it (sometimes unknowingly). By providing developers an open
canvas to register how they see code, we elicited a richer picture of
how code is viewed by di�erent developers.

Further, the study highlighted that the variations in developers’
security orientation in the presence of a multitude of factors make
studying a single factor (such as social identity priming) a di�cult
task. Nevertheless, we argue that more empirical studies need to
consider developers’ socio-technical context and take note of how
developers identify with their actions, which can have implications
for maintenance of their actions [33], [35].

The rest of the paper is structured as follows: Section 2 presents
the study design. Section 3 and 4 present the quantitative and
qualitative analysis, respectively. Section 5 discusses the insights
gained from the study, and Section 6 concludes the paper.

2 The Experiment
The study was structured as a three-condition, between-subjects

experiment. It was approved by the �rst author’s university ethics
committee. The design of the experiment builds on the SI theory
[15] and focuses primarily on the in�uence of participants’ iden-
tities on their (secure) coding behavior. It uses three-things ma-
nipulation technique [15] to prime the participants, i.e., the salient
identity was primed by asking participants a number of questions
about things they do: thinking about themselves personally (for
personal identity) and thinking of themselves as part of the de-
veloper community (for social identity). The prediction was that
a social identity will lead (on average) to decision making that is
more security oriented. This hypothesis was predicated on work in
social psychology (e.g., [18]) showing that, when social identity is
salient, people have more concern for the welfare of others in the
group – and hence they will be more concerned to avoid ‘damaging’
other developers through poor security practice.

The null hypotheses of the study were:
H0: There is no di�erence in security engagement with code be-
tween participants inducted into an identity framework (either

personal or social) and those inducted into a baseline.
�0 : Participants inducted into an identity framework will be more
aware of code security concerns than participants inducted into a
baseline / non-identity framework.
�1 : Participants inducted into a social identity framework will be-
have di�erently from participants inducted into a personal identity
framework with respect to coding concerns (relevant to security).

2.1 Study Design
The study was presented as a 20-to 30-minute online experiment

using the Qualtrics research tool. Three researchers, familiar with
programming, attempted the online study to verify its timings.

Two code review tasks were prepared as behavioral tasks using
code snippets from securecodewarrior.com 2 that had known vul-
nerabilities. Code reviews are “a manual inspection of source code
by developers other than the author” (p.1, [17]). These tasks were
presented to developers of each experimental group, and their order
was counterbalanced for each group. The purpose of the behavioral
tasks was to capture relevant developer behavior. To achieve good
ecological validity, we were interested in capturing developers’ be-
havior ‘in the moment’, along with evidence of security in their
thinking when they look at code. It also replicated the social psy-
chology behavior study reported by Levine et al.[18] to investigate
the identity behavior among individuals in action. Recent work by
Braz et al. [7] and Danilova et al. [11] also considers code reviews
a good candidate to study developers’ security behavior. Hence, we
opted for code-review tasks that prompted developers with di�er-
ent programming skill levels to think of their coding behavior in
their own way and re�ect on it. The details are available online 3.

The code review tasks were written in Python with the Django
web framework and were not modi�ed from their original source.
Some con�guration �les and other unnecessary �les were removed
due to time-limitations. Participants were told to assume that the
code has no compilation errors and has all the required permissions
to execute. Participants were asked to review the code and answer
four open-ended questions: what does the code do, do they notice
anything in particular about the code, how they can improve the
code, and why they would make the change they suggest.

At the start of the study, after the information sheet and con-
sent form, participants were primed for social identity, personal
identity, or a control condition using the three things manipula-
tion technique [15]. The code review tasks were then presented,
followed by 8 Likert-scale (range 1 to 7) manipulation check ques-
tions: a four-item social identi�cation check and four potential
mediator questions ([27], [12][13]). We expected that, in the case of
successful priming of participants in the social identity condition,
participants would score higher in the social identi�cation check
and potential-mediator questions regarding any possible in�uence
of responsibility and reputation.

Toward the end of the online study, participants were asked
whether they were aware of the OWASP list of security vulnerabil-
ities and to discuss them brie�y. This was asked to ascertain how
well-acquainted developers were with common security knowledge.

2Secure code warrior is “an integrated platform that provides secure coding training
and tools” to developers.http://www.securecodewarrior.com
3https://bit.ly/3m9qyAl

Influences of developers’ perspectives on their engagement with security in code CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA

At the end, demographic questions were asked, and participants
were debriefed about code snippets and their source.

2.2 Pilot Study
A pilot study was carried out with 9 participants (3 in each

group) with medium-to-high programming skill (as reported by
the participants) recruited through personal contacts. Participants
were advised to think aloud and ask any questions. The pilot study
identi�ed issues that were �xed in the �nal presentation of the
study. In particular, participants not only noticed the vulnerabilities
seeded by the secure code training platform, but also other security
issues present in the code. Hence, we updated our code book and
scoring to include other security issues.

2.3 Study Participants
The target sample was approximately 120 participants (approxi-

mately 40 participants per identity manipulation), in order to get a
reasonable e�ect size. G*Power4 indicated group N=32 was su�-
cient for acceptable power � 0.8 with j2 for large e�ect sizes � 0.5.
Accounting for potential di�culties in recruiting participants and
the potential need to �lter and pre-process low quality answers, we
estimated that an N=40 would allow for su�cient statistical power.
We aimed to recruit participants within a 3-month time frame.

All the study participants were freelancers. To triangulate the
data sources [31], we recruited participants from more than one
channel. We collected data through two online crowdsourcing com-
munities: upwork.com and freelancer.com. In total, we collected 124
valid responses: 82 from upwork.com and 42 from freelancer.com.
Previous studies have reported recruiting freelancers through on-
line communities as a viable option. They o�er �exibility and access
to wider population [38] and are also considered dependable [22].

Table 1 shows the demographics of the participants. Most of
the participants in the two platforms sampled are Asian. This is
consistent with earlier �ndings that the active online freelance
community is predominantly Asian [6]. Participant selection was
via convenience sampling [36], i.e., pro�les that appeared on top of
the search list based on our search criteria. We did not hand-pick
freelancers by narrowing search criteria for particular continents
or countries in order to achieve representative demographics.

3 Quantitative Data Analysis
This section presents the quantitative analysis: Section 3.1 de-

scribes scoring of participants’ responses to code review tasks; 3.2
discusses inter-rater reliability; and 3.3 discusses the results.

3.1 Scoring Code Review Tasks
The open-ended responses required a systematic coding mecha-

nism to identify evidence of developers’ security engagement with
code. For this we built a codebook that was used independently by
three raters to identify evidence of participants’ security orienta-
tion. The code book 5 was built upon the baseline established by
existing well-known security resources (i.e., OWASP Top 10 [25]
and CyBOK [26]) to classify vulnerabilities. We used the de�nition
of security and its associated attributes from Avižienis et al.’s work

4https://stats.oarc.ucla.edu/other/gpower/
5The codebook and examples of how responses were scored are available in the online
repository https://www.dropbox.com/sh/vrefbk2xshnwpmf/AADgS6iGFPq2GD2V-
XmLpwBva?dl=0.

[3]. OWASP and the CyBOK [26] both di�erentiate between identi-
�cation and mitigation of vulnerabilities. Using this approach, we
scored participants on a progressive scale of 0/1/1/2 for each code
vulnerability: 0 if the particular vulnerability was neither identi�ed
nor mitigated; 1 if the particular was identi�ed; 1 if the particular
vulnerability was mitigated; and 2 if the particular vulnerability
was both identi�ed and mitigated.

We consider mitigation of a vulnerability with its explicit iden-
ti�cation as a vulnerability versus mitigation of a vulnerability
without identifying it as a vulnerability to be an important dis-
tinction, where the former provides evidence that the mitigation
had a security rationale. First, this distinction is drawn from the
resources built by the security community to understand implemen-
tation vulnerabilities. Research in developers’ security also reports
non-security rationales behind participants’ secure choices; e.g.,
Van der Linden et al. [34] observed that many secure choices were
made with non-security rationales, and Acar et al. [2] reported that
developers who provided secure solutions did not believe that they
had done so. Second, psychology literature also suggests the impor-
tance of understanding what people think they are doing, as the
thinking behind action relates to the stability of actions over time,
and understanding thinking has the potential to explain apparent
inconsistencies in individuals’ behavior [33]. We thus consider the
distinction in secure choices (i.e., with or without security ratio-
nale) an important one, with the assumption that a recommendation
with an explicit security rationale more strongly re�ects a security
orientation in developers’ thinking.

We scored each participant for addressing any vulnerability that
exists in the code-snippet. The code snippets have 2 seeded vul-
nerabilities, i.e., vulnerabilities planted in the code snippet by the
source, and 6 additional security vulnerabilities, i.e., vulnerabilities
picked inductively from participants’ responses in the pilot study
(Table 2). Notably, the full data set of 124 responses did not reveal
any new vulnerabilities.

The total score of participant’s security engagement with code is
the sum of their scores on seeded vulnerabilities ()>C0;B44343�+D;)
and on additional vulnerabilities ()>C0;0338C8>=0;�+D; .), i.e.,

)>C0;B42�4=6 =)>C0;B44343�+D; . +)>C0;0338C8>=0;�+D; .
With 8 vulnerabilities in the two code snippets, the total score

for participant’s security engagement with code was from 0 to 16.
A separate binary score, security_awareness, was also assigned

to each participant: 1 if participant identi�ed any vulnerability
(whether correct or not), or talked about security without building
on it; otherwise 0. This independent binary score notes whether
participants think about security ‘upfront’ or not – irrespective
of whether they identi�ed vulnerabilities correctly or provided
appropriate security solutions.

3.2 Inter-Rater Agreement
The open-ended answers to the code review tasks were scored

independently by three raters. Two raters independently coded all
the responses, and the third rater independently coded two di�erent
sub-sets of 10% of the responses from each experimental group.

Two raters built the codebook together, so they had the same
understanding of the vulnerabilities. As a result, IRR (inter-rate
reliability) for 2 coders for all 124 responses was strong with Co-
hen’s kappa values of 0.9 ()>C0;B42�4=6) and 0.7 ()>C0;B44343�+D; .)

CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA I. Rauf , et al.

Total Geographical Disribution Gender
Asia M.East Europe Africa S.America N. America Australia Male Female

Upwork.com 82 52% 15% 12% 9% 4% 7% 1% 81 1
freelancer.com 42 10% 10% 10% 5% 5% 0% 0% 41 1

Table 1: Participant Demographics by Geographical Distribution and Gender

[a]

0

1

2

3

4

Social Personal Control
Identity induction

Se
ed

ed
 V

ul
ne

ra
bl

iti
es

[b]

0.0

2.5

5.0

7.5

Social Personal Control
Identity induction

Se
cu

rit
y

En
ga

ge
m

en
t

Figure 1: Distribution of scores on experimental conditions
for (a) Seeded Vulnerabilities (b) Total Vulnerabilities

and 0.8 (security awareness). The IRR with the third rater on 10%
data, who was not involved in developing codebook, was moder-
ate to substantial using Fleiss’s Kappa, i.e., 0.4 ()>C0;B42�4=6) and
0.7 ()>C0;B44343�+D; .)and 0.79 (security_awareness). Upon discus-
sion of the di�erences for)>C0;B42�4=6 , the third rater reported
usability issues with the code-book. After the usability issues were
addressed, the IRR remained the same on the new 10% data from
each experimental group. A face-to-face (online) meeting of three
raters concluded that, due to the open structure, some responses
are ambiguous and can be coded di�erently.

3.3 Results
Figure 1 shows distributions of participants’ security scores on

both)>C0;B44343�+D; (1a) and)>C0;B42�4=6 (1b) with respect to ex-
perimental conditions. It is notable that attention to security is not
prominent. Performing the preregistered analysis to compare social
identity primes with a one-way ANOVA resulted in p-value=0.5,
suggesting that there are no signi�cant di�erences between groups.
We further performed Tukey multiple pairwise-comparisons be-
tween the means of groups. The results show no signi�cant di�er-
ences between any pair (Personal-Control:p=0.8, Social-Control:
0.9, Social-Personal: p=0.5). Given the pro�le of low scores, we
validated the parametric ANOVA results by also conducting post-
hoc Kruskall-Wallis analysis [20] on:)>C0;B42DA4�4=6 (? = 0.23),
)>C0;B44343�+D; . (p=0.53), and security_awareness (p=0.23), which
mirrored the above outcomes with no signi�cant group di�erences.

Our design allowed us to run a manipulation check on the social
identity induction, to con�rm that participants identi�ed with the
intended identity groupings, as found with prior use of the three-
things paradigm [27]. They also included four potential mediators
that looked for possible in�uence of responsibility and reputation.
That is, we checked how e�ectively the di�erent identity groups

were created. The Cronbach’s alpha of the four social identi�cation
questions is 0.73, showing that they make a reliable scale, i.e., alpha
> 0.7. However, the three conditions did not di�er reliably (Social
= 5.6 , Personal = 5.9 , Control = 5.9). Looking at the means of the
four potential mediators individually for each of the conditions,
none of the four potential mediators showed statistical signi�cance
for any of the questions in the three conditions, i.e., Social: 6.05,
6.45, 5.98, 6.36, Personal: 5.98, 6.61, 5.61, 6.27, Control: 5.98, 6.37, 6,
6.2. As such, the limited impact of di�erent social identity groups
in Figure 1 can be traced back to the lack of strong evidence that
these groups were clearly created.

3.4 Answering RQ1:
Because the statistical analysis of data was inconclusive, we can-

not reject our hypotheses with con�dence. We obtained a �oor
e�ect in participants’ responses in each experimental group. Manip-
ulation checks also showed that the participants were not success-
fully primed for the identity conditions. Hence, we cannot conclude
whether social priming had any e�ect on participants’ security
engagement with code. One post-hoc speculation for why the three
things manipulation did not replicate the e�ectiveness of past stud-
ies is that, in the software development context, the personal and
social identity contrast is more ephemeral or, at least, less salient
to participants in the context of the study.

Despite the inconclusive results of psychological priming, the
rich data collection enabled us to explore: Do developers engage with
security in code irrespective of the priming and control conditions?
Figures 2a and 2b show the frequency of participants’ scores on
)>C0;B44343�+D; (Figure 2a) and)>C0;B42�4=6 (Figure 2b), irrespec-
tive of the priming and control conditions. This shows that only
a few participants identi�ed more than one security issue. Fig. 2
(c) provides a comparison of the three variables -)>C0;B44343�+D; ,
)>C0;B42�4=6 and B42DA8C~_0F0A4=4BB . An interesting comparison
is between the percentage of participants who scored above zero
on)>C0;B42DA4�4=6 (top, Fig. 2 (c)) vs.)>C0;B44343�+D; . (middle, Fig.
2 (c)). When evaluated only for seeded vulnerabilities, 31% scored
above zero (of which only 29% suggested mitigation), whereas 56%
of the participants scored above zero for all vulnerabilities. This
shows the sensitivity of our scoring scale in measuring developers’
security engagement with code. We note in Fig. 2 (c) (bottom) that
44% of participants talked explicitly about security when engaging
with code without security priming.

Participants’ familiarity with OWASP showed no signi�cant
relation to their security engagement with code (53% Yes (n=66),
47% No (n=58)). Some participants who said they are not aware of
the OWASP list, mentioned vulnerabilities included in the list. Of
those who said yes, 14% (n=9) appeared to have copied the OWASP
vulnerability list from online resources. This signals developers’
tendency to copy-paste from online resources, as reported in earlier

Influences of developers’ perspectives on their engagement with security in code CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA

[a]

Histogram of Seeded Vulnerabilities

Scores

Fr
eq
ue
nc
y

0 1 2 3 4

0
20

40
60

80

[b]

Histogram of Total Vulnerabilities

Scores

Fr
eq
ue
nc
y

0 1 2 3 4 5 6 7

0
20

40
60

80
10
0

[c]
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SecAwareness

TotalVul

SeededVul

Yes No

Seeded
Vul.

Total
Vul.

Sec.
Awareness

Figure 2: (a) Frequency of scores on Seeded Vulnerabilities
(b) Frequency of scores on Total Vulnerabilities, (c) Positive
security scores for security awareness (bottom) , total vulner-
abilities (middle) and seeded vulnerabilities (top)

studies [1]. We also consider it noteworthy that, despite the best
e�orts of the security community to disseminate a list of common
code vulnerabilities, many developers working on global projects
are not familiar with the OWASP list.

More than half of the participants engaged securely with the
code despite not being primed for security per se. It is noteworthy,
as we are picking developers from a global marketplace whose
security education, skills, and training are not known (in contrast
to student samples and professional setups where a general under-
standing of their security education and security skills is generally
known). These participants were not primed for security, yet there
was indication of attention to security when engaging with code.
Nevertheless, the security perspectives of developers vary.

4 Variations in Security Perspectives
We conducted an inductive analysis [32] of the 138 responses to

the 2 code review tasks for 69 participants who scored positively
for security engagement with the code. Each response contains
answers to four questions, asked at the end of the code review
tasks, that probe what participants think the code does, what they
notice about the code, actions they would take to correct it, and why.
We studied answers to these questions collectively. Participants’
responses were read several times and were discussed in detail by
the two researchers who coded the data in full.

Three broad themes were identi�ed in the analysis: how secu-
rity issues are identi�ed (4.1), how security issues are mitigated
(4.2) and how participants reason about the security issues in the

code snippets (4.3). These and their sub-themes are discussed in
the sections that follow. The overarching message emerging from
the themes was that developers vary in their security frames of
references and deal with security with di�erent approaches and
for di�erent reasons. Table 2 shows how these security issues were
identi�ed, mitigated, and reasoned about by the participants. We
combined the last three vulnerabilities (insecure communication
channel, insecure payment processing, and unencrypted sensitive
data) under “security issues with payment processing”, as raters
agreed that all three belonged to insecure payment processing.

4.1 Identifying Security Issues
Here, we explore how participants identi�ed the vulnerabilities.

t4.1.1 Types of Vulnerability Identified: Participants identi�ed
eight vulnerabilities in the code. Participants used more than one se-
curity technique to identify some vulnerabilities. Table 2 shows the
terms participants used to talk about these vulnerabilities. For vul-
nerability 1, insecure password storage, participants mentioned that
the password is being saved in plain text, not encrypted nor hashed.
For vulnerability 2, check for weak password, participants noticed
missing checks for password length and combination of characters.
For vulnerability 6, security issues with payment processing, partici-
pants identi�ed insecure payment processing, using unencrypted
payment data, and use of insecure communication channels. For the
other vulnerabilities, retrieving data of all users, unique username
check, and logging sensitive information, participants identi�ed one
particular aspect of code that can lead to vulnerability.

t4.1.2 Inconsistent Use of Security Terms: The way in which par-
ticipants talked about vulnerabilities suggests that developers often
use security terms inconsistently from one other. In some cases they
appear to understand the concept but apply the wrong term, and
in others they have confused the concepts. For example, OWASP
strongly recommends hashing of passwords [25] for storage and
not to use encryption. As an example of confounding concepts,
UP12 stated that passwords should be saved with encryption and
suggested using Django for password storage because it “..ensures
the password data entered is irreversible”. However this is a char-
acteristic of hashing, not encryption. As an example of applying
incorrect terms, FP10 and UP15 both noticed that the password
was not encrypted and suggested that the password should be
hashed. This illustrates that some developers mix di�erent secure
(i.e. hashing) and insecure (i.e. encryption) terms in a given scenario,
even though they appear to understand the underlying concepts.
Some developers, however, demonstrated command over both secu-
rity language and security knowledge, e.g., UC19 stated explicitly:
“Passwords should never be stored in plain text, should also not be
encrypted using an encryption algorithm; it should be hashed so
no one can decrypt the password”. UP12, FP10, and UP15’s use of
inconsistent language may indicate that they have insu�cient se-
curity education. However, taken together these cases (plus UC19)
suggest that inconsistent use of terms is common and may lead to
a false perception of developers’ security knowledge.

The data also shows how developers often use the terms con�den-
tiality and privacy loosely. Con�dentiality is one of the attributes
of security that requires “absence of unauthorized disclosure of
information” (p.95, [3]); privacy relates to an individual’s right over

CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA I. Rauf , et al.

1.Insecure Password Storage
Id. plain-text (e.g., UC19, US10) not encrypted (e.g., UP15) not hashed(e.g., UP15)
Mit. encryption (e.g., FS11) hashing (e.g.,FP10) hashing with salt (e.g.,UP15) Built-in models (e.g.,UC21)

2.Check for weak password
Id. password length (e.g.,FP13,FP3) combination of characters (e.g., FP1,FC4)
Mit. check for: min. length (e.g., FP13) , max. length (e.g., FC4, UC24) Combination of characters(e.g., FP1,FC4)

3. Retrieving data of all users
Id. All users’ data is retrieved (e.g., FS7, FS6)
Mit. remove it

availability issues (e.g.,FS6) privacy issues (e.g., US5) con�dentiality issues (e.g.,FS7) unnecessary code (e.g. FP13)
reduce network data (e.g., UC5) improve e�ciency (e.g., FS6) scalability issues (e.g. UC5)

4. Unique Username check:
Id. missing check for unique username (e.g., FP1, FS3, FS6)
Mit. add a check for unique username

security concerns (e.g., UP15) avoid confusion (e.g., UC7) code maintainability (e.g., FC3) avoid errors (e.g., FP1)
5. Logging Sensitive information

Id. User’s sensitive information is logged (e.g., FC3, FC6, FS10)
Mit. remove it (e.g., FS10) hash it (e.g., FC3) encrypt it (e.g., UC5)

6. Security Issues with payment processing
Id. insecure processing ((e.g, FP10) unecrypted data (e.g, US18) insecure comm. channel (e.g., UP12)
Mit. use secure channel (e.g., UP12) encrypt users’ info (e.g., FP10) use 3rd party payment service (e.g., UC12)

Table 2: Theme 1: Security Issues identi�ed (Id.) and mitigated (Mit.) by Study Participants. Last 3 vulnerabilities are combined.
Blue cells denote reasoning that is not about security.

individual’s identi�able information [30]. Researchers also at times
tend to con�ate the two terms (e.g.,[4]), but privacy and con�den-
tiality are two di�erent concepts. Some participants talked about
users’ “privacy” concerns if all information is retrieved from the
database and sent to the register page of a new user, while another
noticed that all existing users will be “exposed to the unautho-
rized user”. Similarly, while some participants identi�ed “privacy”
concerns in logging users’ credit card information, others noticed
“con�dentiality” issues with logging users’ credit card information.

4.2 Mitigating Security Issues
Participants varied in how they mitigated security issues in code.

t 4.2.1 Variation inmitigating Specific Vulnerabilities: Table 2 shows
how participants varied in their approaches to mitigating the same
security issues, though not all of them are correct. For example,
checking for minimum length of password and combination of
characters is a correct approach to ensure strong passwords, but
checking for maximum length is not6.

Similarly, removing a user’s payment information from logging
on the server is appropriate, rather than encrypting it or hashing
it. For other vulnerabilities, participants suggested mitigation ap-
proaches that are correct. However, as vulnerabilities security issues
in payment processing and check for weak passwords require more
than one code-�x, most of the participants did not suggest all of
them. We see these variations as an indication that, even when
developers attend to security, they may not consider whether their
actions are complete and su�cient.

For example, to mitigate a missing check for weak passwords,
some participants suggested a limit to maximum password length,
a measure which NIST guidelines warn against. Although these

6https://jumpcloud.com/blog/review-of-nist-sp-800-63-

participants suggested other password security measures (e.g., FC4
suggested using a combination of characters for a strong password),
incomplete security measures, such as limiting maximum password
length, can make the code vulnerable.

t 4.2.2 Types of Suggested Solutions: Among the di�erent types of
suggested solutions, participants often suggested using third-party
technical solutions. Although using third-party payment process-
ing and authentication services is recommended by the security
experts 7, many developers opted to use a third-party solution for
reasons other than security. Table 3 shows how participants used
third-party technical solutions to address di�erent issues in code,
suggesting that 64% of participants used them for non-security rea-
sons. Three di�erent types of third-party solutions were suggested
by the participants: Django’s built-in packages, payment processing
services, and authentication services.

Participants who suggested using Django’s built-in features
or other third-party services, instead of implementing their own,
mostly preferred them for non-security reasons. Reasons included
improved e�ciency, code maintainability, powerful processes, easy
to use, and social acceptance. We re�ect that security in code is
an ‘intangible characteristic’, that may not be readily evident to
developers; hence, it needs to be ‘sold’ to developers as something
that provides immediate bene�ts that they can observe.

4.3 Types of Security Reasoning
This section unpacks how participants varied in their reasoning

for suggesting secure actions.

t 4.3.1 Social Considerations: We noted mentions of all social con-
siderations in participants’ responses and observed that most of the
social considerations led to secure actions. Table 4 shows which

7https://www.securecodewarrior.com/

Influences of developers’ perspectives on their engagement with security in code CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA

di�erent types of social considerations led to which code quality.
The blue cells show non-security reasoning for participants’ ac-
tion, which are few. Participants mentioned concerns about users
su�ering loss from information leaks and to protect users from
making mistakes by suggesting stronger passwords [US18, UC24].
Some participants (tended to) perform secure actions on ethical
grounds [e.g., UC14], while others were fearful of audit companies
not approving their applications [e.g., UC12] or of malicious in-
siders and outsiders exploiting insecurely-saved data on servers
[e.g., UC24, UP21]. Participants were also motivated to ensure their
secure practices in order to maintain users’ and customers’ trust
[e.g., UP12, FP10]. We also saw evidence of participants’ excessive
trust in ‘big players’; for example, UC24 suggested logging users’
card information only if servers are as secure as those of Visa/ Mas-
terCard. This echoes earlier �ndings that suggest that developers
tend to trust ‘big players’ [19]. Nevertheless, while trusting and
using prepared solutions by ‘big players’ is generally encouraged,
it is important that developers have critical security knowledge
to make informed decisions. For example, in this case, logging of
users’ card information on servers is not secure even for ’big play-
ers’, which UC24 thought is not harmful. Additionally, participants
were concerned about following social norms surrounding security
practices. While some talked about recommended ways and best
practices when using Django built-in capabilities [UC22, FC10],
others talked about best security practices for fear of being labelled
newcomers by the developer community [UC3].

t 4.3.2 Implementation Vs. Design Vulnerabilities: We noticed vari-
ation in how the participants looked at design vulnerabilities, i.e.,
problems that arise due to software design issues vs. implementa-
tion vulnerabilities, i.e., problems that arise due to issues in code
that is working functionally well but has security problems. We
presented the code snippets to participants expecting them to no-
tice implementation vulnerabilities, but we realized that developers
engage with code at the design level simultaneously. While the
technical vulnerabilities had clear security rationale, participants
approached design vulnerabilities di�erently, as shown in Table
2. Vulnerabilities 2 and 3 are design-level vulnerabilities, and par-
ticipants varied in their reasoning on why they should be �xed,
oscillating between security and non-security reasons. While some
noticed retrieving information of all users because of availability
issues [e.g., US1, FS6], compromise on users’ privacy [e.g., FP13],
and con�dentiality [e.g., US25, FS7], others suggested removing it
for improving e�ciency [e.g., US21, US17], getting rid of redundant
code [e.g., FP13, US9], and scalability concerns [e.g., UC5].

Similarly, while many participants noticed check for unique user-
name in code and suggested �xing it for security reasons [e.g.,
UP15], some other participants suggested removing it to avoid con-
fusion [e.g., FS13, UC7], for code maintainability [e.g., FC3], and to
keep the application functional [e.g., FS6, FP1].

4.4 Answering RQ2
The pre-registration plan was to relate qualitative analysis to

quantitative �ndings. However, as the �ndings with respect to RQ1
were inconclusive, we present the �ndings with respect to RQ2
without drawing such a relation.

The qualitative analysis of participants’ responses suggested
that, when security requirements are not de�ned explicitly in spec-
i�cation documents, participants approach security in code based
on their own perceptions of security, rather than what software
owners (or researchers for that matter) expect them to address. Par-
ticipants used varying language to identify security vulnerabilities
and sometimes mitigated vulnerabilities di�erently from one other.
The reasons for attending to security also varied. Participants ap-
proached security in their own context, and developers’ security
is a context-sensitive problem. Evidence suggests that use of third-
party and built-in technical solutions is often adopted as part of
developers’ preferred way of working due to di�erent non-security
reasons related to developers’ immediate contexts. Additionally,
social considerations for other developers and for the wider good,
were often a key motivation for participants’ security actions.

5 Discussion and Future Work
This analysis suggests the need for a holistic look at developers’

secure coding behavior, with carefully-crafted empirical studies
which recognise developers’ complex socio-technical contexts.

Socio-technical systems envision a greater involvement of hu-
man action in engineering solutions [24]. Socio-technical researchers
highlight that “software design methods are geared towards de-
veloping a solution to ‘the problem”’, thus if that ‘problem’ is not
understood properly then applying the methods will generate an
“inappropriate solution.” (p.13,[5]). In order to address appropri-
ately the problems that developers face in writing secure code, it
is important to understand what security means in their context.
Providing security interventions in the context in which developers
sit is recognized in existing literature [10].

5.1 Developers think about security di�erently
Developers have often shared blame for not thinking about secu-

rity [23] [37]. Wurster and Oorschot [37] considered it unrealistic
to expect secure code from developers in general, as they vary in
their skills, of which security is often not a part. Naiakshina et al.
conducted a �eld study with freelance developers and suggested
that the “majority of non-prompted freelancers did not think about
security” (p.2.[23]). This work explores whether developers think
about security at all, irrespective of whether they provide correct
security solutions. It shows that, without prompting for security,
the majority of developers (56% of participants) engaged securely
with code, with nearly half of the participants (44%) being explicitly
conscious about security. However, developers varied in how they
noticed security in code, how they talked about it, and how they
dealt with it. We scored participants’ security behavior based on
any security vulnerabilities they noticed which are accepted in
the security community as a vulnerability, while previous studies
scored participants only on seeded vulnerabilities, i.e., vulnerabili-
ties researchers expected participants to notice and address with
correct security solutions. The work of Lopez et al. [19] on un-
derstanding how developers talk about security with one another
analysed developers’ conversations in Stack Over�ow and observed
that developers are interested in security and engage in meaningful
conversations about security. While the work of Lopez et al. [19]
focused on how developers talk about security with one another, we
capture developers’ engagement with security when they engage

CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA I. Rauf , et al.

1. Django’s Built-in Packages
Improve code maintainability (cleaner code,less code, avoid code repetition), readability, �exibility (e.g., US28,US26,UC22)
Improve E�ciency avoid extra query to database, save time (e.g., UC1, UP12)
Make things easier easy to test, easy to handle database, easy to do desired task, avoid uncertain errors (e.g., UP21, UP19)
Powerful processes lots of features, comes with default models, automates tasks, can build complex projects (e.g., FC10, UC14, UC13)
Trust rely on proof-tested system, avoid rewriting, build on years of programming (e.g., FC10)
Social Acceptance recommended way to use, part of best practices, avoid being labelled a newcomer (e.g., UC22, FC10)
Security avoid security holes, automatic hashing of passwords, make applications more secure (e.g., UP12, FC10, US28)

2. Payment Processing Services
Other reasons save time, write tests more easily (e.g., UC10, UC13)
Security reasons conform to PCI standards, security of customers’ data, avoid threat to business security (e.g., UC12, UC5)

3. Authentication Services
Other reasons smooth registration service, powerful and easy (e.g., FC10)
Security Reason not storing data on server, protecting app from attacks (e.g., UC10, UP19)

Table 3: Theme 2 - Participants’ Use of Other Technologies - Blue cells denote non-secure reasoning. Blue cells denote reasoning
that is not about security

Social Considerations
1. Care and concern for users ensure users’ data con�dentiality (US25) ensure users’ privacy (UC5) avoid mistakes by users
2. Ethical responsibility remove logging of sensitive data (UC14, US21)
3. Fear of security watchdogs remove logging of sensitive data (US21) ensure secure payment processing (UC12)
4. Fear of malicious insiders ensure secure password storage (e.g., UC24) ensure secure payment processing (e.g., UP21)
and outsiders remove logging of sensitive data (e.g., UC24)
5. Trust by / in others ensure secure password storage ((e.g., FP10) ensure secure payment processing

(e.g., UP12,)
remove logging of sensitive data
(e.g., UC24)

6. Social norms avoid security holes in user registration
(UC3)

remove logging of sensitive data
(UP26)

use Django’s built-in features
(UC22)

get better code maintainability (FC10) get scalable application (FC10)
Table 4: Theme 3 - Social Considerations and their goals in code – Blue cells denote non-secure reasoning

with code through re�ection and review. Our observations on the
importance of context are also in sync with research in behavioral
science. Building on action identi�cation theory [33], Hunt and
Hoyer [16] observe that when researchers assume actions as ob-
jects and researchers’ identi�cation of action as “correct”, without
measuring how the behavior is conceptualized by individuals, they
face the risk of losing important information, and this a�ects the
maintenance of action as well as the emergence of new behavior.
They consider this a potential bias. We thus consider the sensitiv-
ity of our scoring approach in measuring developers’ engagement
with security during code review to be important, i.e. to quantify
developers’ security based on how they perceive it.

5.2 Leveraging the socio-technical context
This section considers how socio-technical context can be lever-

aged to improve secure code development.

t5.2.1 Diversity of developers’ perspectives should be accommo-
dated: Developers’ diversity, with varying skills and experiences,
includes di�erent viewpoints on security for the same piece of code.
While initially we expected developers to �nd one seeded vulnera-
bility in each task, after the pilot studies we scored participants for
eight vulnerabilities for both the tasks. This illustrated that “more
eyes see more”, with the di�erent security viewpoints combining
into a richer overview. This suggests that researchers and tool-
smiths should engage with the diversity of developers’ viewpoints

on code security and seek to accommodate and potentially harness
it, rather than considering developers as ‘outside the problem space’.
Security tools should aim to support them in their diverse contexts,
facilitating them to consider security more broadly. The problem
with many existing (security) interventions (e.g., automated se-
curity tools) is their technical focus, excluding the non-technical
aspects of the problem [28]. Unless security interventions are con-
textualized to developers’ needs, security interventions will �nd
little space in developers’ routine tasks.

t5.2.2 Security should add value to a developer’s immediate con-
text: Developers feel comfortable adopting third-party services and
built-in packages of the development frameworks. Security experts
encourage developers to use these ‘prepared’ solutions instead of
writing their own. However, developers are eager to adopt these
‘prepared’ solutions for many non-security reasons such as conve-
nience of use, e�ciency of solution, and code maintainability. We
suggest that, while security may not yet be a tangible quality to de-
velopers, it needs to be packaged with other code quality attributes
that are visible to developers in their immediate contexts.

5.3 Challenges for multidisciplinary studies
Investigating developers’ security practices in real contexts is dif-

�cult, because factors that in�uence developers’ thinking are hard
to control and account for. We conducted a multidisciplinary study
to understand whether priming developers to think of themselves in

Influences of developers’ perspectives on their engagement with security in code CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA

terms of a personal or social identity in�uenced their secure coding
behavior; unfortunately, the study found no signi�cant di�erences
between experimental conditions.

The design of the study prompted individuals to think of them-
selves either as member of the developer community or as an in-
dividual or without such priming, in order to observe the e�ect of
priming on their security engagement with code. We made careful
e�orts to recruit participants without priming them to think of
themselves as developers – in that we faced many challenges. We
had to give up one recruiting path8 that required screening par-
ticipants as a “developer”. We recruited developers from an open
market of freelancers without explicitly mentioning the word ‘devel-
oper’ in its job posting. As the job posting mentioned ‘code-review
tasks’, the risk of being primed as developers existed. To address
this, we framed psychological priming questions by mentioning
that the study is in collaboration with psychologists to study some
human factors in coding and to help the psychologists know more
about them as individuals – followed by priming questions. The
psychologist co-authors considered this su�cient to nullify any
e�ect of priming during recruitment. However, the priming results
showed that participants were not successfully primed in di�erent
conditions. The closer look at the responses showed that the major-
ity of participants in each of the conditions talked about themselves
as developers; hence, our understanding is that they came to the
study thinking of themselves as developers, and that this inherent
identity may have limited the e�ect of the priming.

Although all participants were paid £10/ hour (net amount) as an
incentive to participate in the study, we realized that participants
were implicitly incentivised to improve their developer pro�le on
the freelancing platform. Many freelancers contacted us after the
study to give them feedback and mark the job done. It improved
their rating, pushed them up in search algorithm, eventually helping
them get more clients. This possibly explains further why the social
and personal identity priming was not successful. Nevertheless, the
rich data helped us make meaningful assessment of how developers
engage with code, even though priming was not successful. The
detailed report on challenges we faced in recruiting participants
for this multidisciplinary study can be found here [29].

5.4 Issues with Security Knowledge
t5.4.1 Inconsistent Security Terminologies: The inconsistent use
of terminology is identi�ed as one of the challenges to advancing
research in usability, security, and privacy in the 2010 report on the
National Academy of Sciences Workshop [9]. Similarly, this study
provides evidence that developers from industry use the terms
con�dentiality and privacy loosely – sometimes with the same im-
plications. Additionally, while encryption and hashing are di�erent
ways to secure data for di�erent purpose, developers often used
these words interchangeably. Research needs to unpack such sub-
tle di�erences in developers’ understanding of security terms and
assess developers’ security in the context of the security cultures to
which they belong. Practitioners need to devise interventions that
propagate consistent use of security terminologies among develop-
ers, addressing shortcomings in developers’ security understanding

8Qualtrics Research Services

and miscommunications that may arise among stakeholders due to
the inconsistent use of terminologies.

t 5.4.2 Lack of Familiarity with OWASP Top 10 Vulnerabilities: The
OWASP list of Top 10 vulnerabilities is one of themost-disseminated
security awareness resources by the security community. Hence, as
security researchers and practitioners, we considered knowledge
of the OWASP vulnerabilities as a reasonable yardstick to gauge
developers’ familiarity with security knowledge. The responses
of the participants, however, showed that many participants were
either totally unaware of the OWASP list [e.g, FP1, UC22] or had
knowledge of vulnerabilities but did not know them as part of the
OWASP list [e.g., UP12, FC14]. We suggest that security researchers
and industrialists need to disseminate security information more
widely, with an understanding of the diversity of the software de-
velopment community. This includes, for example, developers who
may work outside of organisational boundaries and work in dif-
ferent socio-cultural contexts. This also requires an understanding
of the diverse communication channels such as discussion forums,
software freelancing platforms and code repositories, etc.).

t5.4.3 Incomplete Knowledge of Password Protection:
Weak password checks is one of the top OWASP vulnerabilities

and, despite implementing secure password storage, information of
users with weak passwords can be hacked easily via sophisticated
technologies. Developers’ security engagement when working with
passwords is often assessed in terms of how developers store pass-
words, for example in the work of Naiakshina et al. [22] and Hallet
et al. [14]. Implementation of strong password checks is also a rec-
ommended OWASP practice which is often overlooked. We observe
that many developers who suggested secure storage of passwords,
failed to notice that strong password checks were not implemented.
On the other hand, others noticed missing checks for strong pass-
words, but failed to store passwords securely. In some cases [FC4
and UC24] developers even suggested insecure ways to validate
passwords to suit their personal preferences, such as reducing the
maximum character length of passwords. This example highlights
the need to investigate how holistic developers’ security knowledge
and thinking is, and how to promote more holistic reasoning.

6 Limitations of the Study
We studied participants’ security engagement with code irre-

spective of identity priming in this work. Although participants
were not primed to think about security, there could be a chance
that participants’ coding behavior may have been in�uenced by
identity priming done in the beginning of the study. To assess
whether any such e�ect was present, we studied the responses to
the social identi�cation check questions and the open answers to
the identity priming questions. We found no evidence of successful
identity priming. Hence, we can safely say that participants were
not primed by the design of our study.

Due to the unknown socio-technical contexts of participants in
the freelance community, we cannot say whether the di�erence
between participants who engage with security in code and those
who do not is due to their previous exposure to security knowledge,
security skills, and security culture. We tried to address this limita-
tion by addressing a security-speci�c question about a well-known
security source, i.e., OWASP, to capture how well-acquainted they

CHASE 2022, May 21–22, 2022, Pi�sburgh, PA, USA I. Rauf , et al.

are with common security knowledge. We did not �nd any cor-
relation between participants’ answers to this question and their
security engagement with code. However, we do accept that our
sample might be biased towards developers who may not have
technical security skills or biased towards a certain region. How-
ever, our sample is representative of general freelance community
that is hired online. Additionally, since our sample also includes
participants from other regions, we performed a sanity check, com-
paring data from di�erent regions, but did not �nd any noteworthy
di�erences. Our work was designed to seek evidence of security in
developers’ thinking when they engage with code irrespective of
their security knowledge and experience. This preliminary study
provides evidence of security in participants’ thinking. We plan to
control for other factors in future studies.

7 Conclusion
This paper reports a psychologically-informed study to under-

stand how socio-technical contexts a�ect the ways developers at-
tend to and engage with security in code. The paper presents a
multi-faceted account of the observed behaviours, based on quanti-
tative and qualitative assessments of participants’ open responses
to code review tasks, and �nding that developers’ approaches to
security vary. The participants varied in how they noticed security
issues in code, how they addressed them, and why they chose par-
ticular code changes. This evidence suggests that security occupies
a complex decision space, and that many developers do think about
security – but that they think about it di�erently from one another,
bringing di�erent viewpoints to security in code.

In order to embrace this diversity in developers’ security frames
of reference, more empirical studies need to consider developers’
socio-technical contexts and take note of how developers identify
with their actions, which can have implications for maintenance of
their actions [33], [35]. It further suggests the need for innovation
in addressing security bottom-up, with a more collaborative and
contextualised understanding of developers’ perceptions of secu-
rity. We conclude that, only once we are able to comprehend how
security is regarded by developers, can we provide interventions
that are appropriate to the individual development context in order
to in�uence their secure coding behaviour.

8 Acknowledgements
We thank all the study participants and acknowledge Joseph Hallett for

his input as third rater for scoring participants’ responses. The workwas par-
tially supported byUKRI/EPSRC (EP/P011799/1, EP/P011799/2, EP/R013144/1
and EP/T017465/1), NCSC, and SFI (13/RC/2094 and 16/RC/3918).

References
[1] Y. Acar et al. 2016. You get where you’re looking for: The impact of information

sources on code security. In 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 289–305.

[2] Y. Acar et al. 2017. Security developer studies with github users: Exploring a
convenience sample. In Thirteenth Symposium on Usable Privacy and Security
({SOUPS} 2017). 81–95.

[3] A. Avižienis et al. 2004. Dependability and its threats: a taxonomy. In Building
the Information Society. Springer, 91–120.

[4] R. Balebako et al. 2014. The privacy and security behaviors of smartphone app
developers. (2014).

[5] G. Baxter and I. Sommerville. 2011. Socio-technical systems: From designmethods
to systems engineering. Interacting with computers 23, 1 (2011), 4–17.

[6] N. Beerepoot and B. Lambregts. 2015. Competition in online job marketplaces:
towards a global labour market for outsourcing services? Global Networks 15, 2
(2015), 236–255.

[7] L. Braz et al. 2021. Why Don’t Developers Detect Improper Input Validation?’;
DROP TABLE Papers;–. In 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE). IEEE, 499–511.

[8] Top Coder. 2021. On-Demand Talent Trends Report. Retrieved June 18, 2021
from https://www.topcoder.com/blog/talent-trends-report-part1/

[9] National Research Council. 2010. Toward Better Usability, Security, and Privacy of
Information Technology: Report of a Workshop. National Academies Press.

[10] A. Danilova et al. 2020. One size does not �t all: a grounded theory and on-
line survey study of developer preferences for security warning types. In 2020
IEEE/ACM 42nd International Conference on Software Engineering. IEEE, 136–148.

[11] A. Danilova et al. 2021. Code Reviewing as Methodology for Online Security
Studies with Developers–A Case Study with Freelancers on Password Storage. In
Seventeenth Symposium on Usable Privacy and Security ({SOUPS} 2021). 397–416.

[12] B. Doosje et al. 1995. Perceived intragroup variability as a function of group status
and identi�cation. Vol. 31. Elsevier. 410–436 pages.

[13] B. Doosje et al. 1998. Guilty by association: When one’s group has a negative
history. Journal of personality and social psychology 75, 4 (1998), 872.

[14] J. Hallett et al. 2021. "Do this! Do that!, And Nothing will happen": Do speci�-
cations lead to securely stored passwords?. In 43rd International Conference on
Software Engineering (43 ed.). Institute of Electrical and Electronics Engineers
(IEEE), United States.

[15] S Alexander Haslam. 2004. Psychology in organizations. Sage.
[16] G. W Hunt and W. D. Hoyer. 1993. Action identi�cation theory: An examination

of consumers’ behavioral representations. ACR North American Advances (1993).
[17] O. Kononenko et al. 2016. Code review quality: How developers see it. In Pro-

ceedings of 38th international conference on software engineering. 1028–1038.
[18] M. Levine et al. 2005. Identity and emergency intervention: How social group

membership and inclusiveness of group boundaries shape helping behavior.
Personality and social psychology bulletin 31, 4 (2005), 443–453.

[19] T. Lopez et al. 2018. An investigation of security conversations in stack over�ow:
Perceptions of security and community involvement. In Proceedings of the 1st
International Workshop on Security Awareness from Design to Deployment. 26–32.

[20] P. E McKight and J. Najab. 2010. Kruskal-wallis test. The corsini encyclopedia of
psychology (2010), 1–1.

[21] D. Mendez et al. 2020. Open science in software engineering. In Contemporary
Empirical Methods in Software Engineering. Springer, 477–501.

[22] A. Naiakshina et al. 2017. Why do developers get password storage wrong? A
qualitative usability study. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 311–328.

[23] A. Naiakshina et al. 2019. “If you want, I can store the encrypted password” A
Password-Storage Field Study with Freelance Developers. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–12.

[24] M. Ottens et al. 2006. Modelling infrastructures as socio-technical systems.
International journal of critical infrastructures 2, 2-3 (2006), 133–145.

[25] OWASP Foundation, the Open Source Foundation for Application Security. [n.d.].
https://owasp.org/. (Accessed on 03/06/2020).

[26] Frank Piessens. 2019. The Cyber Security Body of Knowledge. University of Bristol,
Chapter Software Security. https://www.cybok.org/ Version 1.0.

[27] T. Postmes et al. 2013. A single-item measure of social identi�cation: Reliability,
validity, and utility. British journal of social psychology 52, 4 (2013), 597–617.

[28] I. Rauf et al. 2021. The Case for Adaptive Security Interventions. ACMTransactions
on Software Engineering and Methodology (TOSEM) (2021).

[29] I Rauf et al. 2022. Challenges of Recruiting Developers in Multidisciplinary
Studies. In Accepted for publication in 1st International Workshop on Recruiting
Participants for Empirical Software Engineering (RoPES’22.

[30] P. M Schwartz and D. J Solove. 2011. The PII problem: Privacy and a new concept
of personally identi�able information. NYUL rev. 86 (2011), 1814.

[31] MA. Storey et al. 2020. The who, what, how of software engineering research: a
socio-technical framework. Vol. 25. Springer. 4097–4129 pages.

[32] D. R Thomas. 2006. A general inductive approach for analyzing qualitative
evaluation data. American journal of evaluation 27, 2 (2006), 237–246.

[33] R. Vallacher and D. MWegner. 1987. What do people think they’re doing? Action
identi�cation and human behavior. Psychological review 94, 1 (1987), 3.

[34] D. van der Linden et al. 2020. Schrödinger’s security: opening the box on app
developers’ security rationale. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 149–160.

[35] D. M. Wegner et al. 1984. The emergence of action. Journal of Personality and
Social Psychology 46, 2 (1984), 269.

[36] C. Wohlin et al. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[37] G. Wurster and P. Van Oorschot. 2008. The developer is the enemy. In Proceedings
of the 2008 New Security Paradigms Workshop. 89–97.

[38] A. Yamashita and L. Moonen. 2013. Surveying developer knowledge and inter-
est in code smells through online freelance marketplaces. In 2nd International
Workshop on User Evaluations for Software Engineering Researchers. IEEE, 5–8.

